
CTFS-ForestGEO ARTHROPOD INITIATIVE 2008-2015:

How to monitor insects in tropical rainforests

Yves Basset, Smithsonian Tropical Research Institute, bassety@si.edu

ForestGEO ®

Wabikon Lake, WI, USA Wind River, WA, USA

Yosemite, CA, USA Santa Cruz, CA, USA

"Hawaii, USA

Panama La Planada, Colombia Yasuni, Ecuador Amacayacu, Colombia Manaus, Brazil

Lilly Dickey Woods, IN, USA Wytham Woods, UK

Haliburton Forest, Canada Harvard Forest, MA, USA

SERC, MD, USA SCBI, VA, USA

Barro

Gatún

Luquillo, Puerto Rico

Korup, Cameroon Rabi, Gabon Ituri, Dem. Rep. Congo Mpala, Kenya

Gamboa

Ilha do Cardoso, Brazil

Dinghushan, China Nonggang, China Xishuangbanna, China Mo Singto, Thailand Doi Inthanon, Thailand

Huai Kha Khaeng, Trailand Kino, Chorig, Thailand Muchmatai, Iridia

> Sinharaja, Sri Lanka Pasoh, Malaysia Bukit Timah, Singapore

Baotianman, China Donglingshan, China Changbaishan, China

> Tiantongshan, China Gutianshan, China

Fushan, Taiwan Lienhuachih, Taiwan Nanjenshan, Taiwan

Hong Kong, China Palanan, Philippines Danum Valley, Malaysia Lambir, Malaysia

Brunei

Wanang, PNG

NABA

Currently: 61 sites in 24 countries 6 million of trees monitored, representing 10,000 species 10 science initiatives: Arthropoda monitoring: 9 sites

Interest of monitoring tropical arthropods

- intimately associated with plant species
- participate in ecosystem processes: herbivory, pollination, seed dispersal, decomposition
- represent huge biomass and most of biodiversity
- results are very amenable to statistical analysis of long-term trends
- short generation times (4-10 gen/yr): interest to develop early warning systems

but

- taxonomic impediment
- cannot study all of them
- poor knowledge about their ecology and effects on plants
- cannot be tagged...

Interest of monitoring arthropods at ForestGEO sites

Access to:

- Long-term meteorological data
- Vegetation data: floristics
- Vegetation data: spatial distribution

In some cases:

- Phenological tree data
- Other science initiative, eg leaf traits, DNA barcoding, etc.
- Insect data and collections
- Joining the arthropod mini-network

CTFS-ForestGEO ARTHROPOD INITIATIVE Aims:

to monitor key insect assemblages over the long-term at CTFS sites and

to study insect-plant interactions across the CTFS network

At each CTFS site, 3 phases: - baseline survey to identify common species

- monitoring (modeled on baseline survey)
- interaction studies (different set of protocols)

2015: 9 sites activated: Barro Colorado Island (Panama), Yasuni (Ecuador), Rabi (Gabon), Tai Po Kau (Hong Kong), Dinghushan (China), Xishuangbanna (China), Bukit Timah (Singapore), Khao Chong (Thailand) & Wanang (Papua New Guinea)

Backed by an international panel (steering committee) of 26 experts

CTFS-ForestGEO ARTHROPOD INITIATIVE

Develop a structured program of arthropod studies across the CTFS plots

Integration with ongoing monitoring of plant dynamics within the network

Cause minimum possible impact to the plots

Focus on a priority set of assemblages chosen for their

- ecological relevance
- taxonomic tractability
- ease of sampling

Monitoring Interactions only

Priority assemblages

Litter ants: key organisms in tropical forests and often key predators [Formicidae]

Selected moths and butterflies: caterpillars leaf-chewers, adults often pollinators

[Rhopalocera, Geometridae, Arctiinae & Pyraloidea]

Bees: important pollinators of many tropical trees — [Apidae Euglossini]

Termites: important decomposers in tropical forests [Isoptera]

Tephritid fruit-flies: seed (fruit) predators [Tephritidae]

Seed predators: important influence on fruit/seed survival (whole guild) [Varia]

Full suite of 15 taxa studied at BCI, Panama

Methods: baseline survey & monitoring

Litter ants: extraction from litter with Winkler

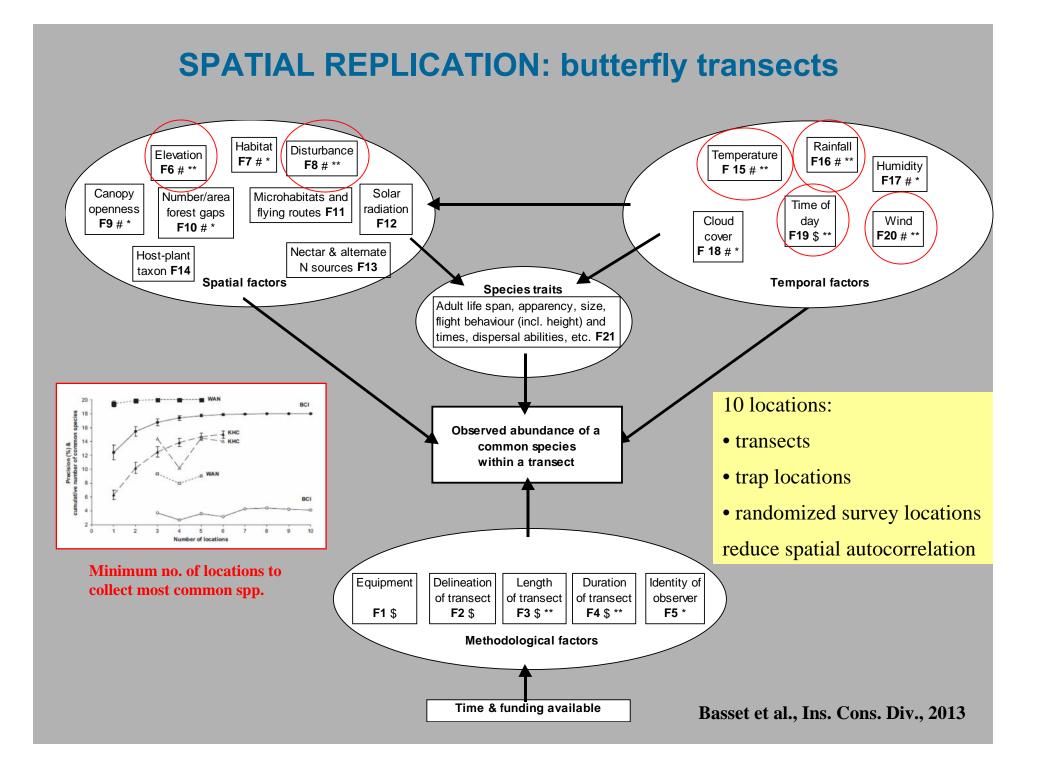
Bees: attraction to chemical baits, _____ (only Neotropical sites)

Tephritid fruit-flies: baited McPhail traps _ (not in the Neotropics)

Moths and other taxa: light traps —

Termites: light traps & hand search in quadrats

Butterflies: Pollard transects vs. fruit traps in tropical rainforests


Variable	Pollard walks	Fruit traps	
Easy implementation at most sites = global program	Yes	No: does not work well or not at all in Panama, Thailand, Vietnam and New Guinea, for example	Smithsonian Tropical Research Institute
Interpretation of results	OK, data can be filtered to reject poor samples if needed (T, wind, RH, cloud)	As long as we do not know why fruit traps do not perform consistently well among locations, this cast doubts on the replicability of the protocol (seasonality of fruit occurrence)	<section-header></section-header>
Target of local assemblages	All butterflies	Fruit-feeding Nymphalidae 1 out of 6 butterfly families or < 20% of local butterfly species	ander naturalise allo, making there excellent Cardinates for assessing the effectiveness of WISTAR MARIPOSAS
Costs (other than personal) (costs for personal are similar)	Low	Traps; baits may be locally expensive because unavailable (PNG)	
Need for trained personal in field	Yes, depend on observer training and local reference collections	No, unless butterflies are released	
Percentage of species identified	Only easily recognizable species, or species which are collected % varies among sites	Normally 100% of individuals	

Implement Pollard walks at study sites, supplemented by fruit traps when working well

Summary: sites x protocols as of April 2015

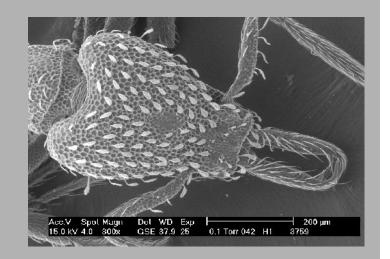
CTFS-ForestGEO site	Country	Year initiated	PI	Insect taxa and protocols Re					Region									
				Monitoring (6) Interaction					ions (1)									
				Butterflies	Transects	Fruit flies	McPhail traps	Euglossine bees	Cineole baits	Litter ants	Winkler	Termites	Transects	Moths and others	Light traps	Seed predators	Rearing seeds	
Barro Colorado Island	Panama	2009	Y. Basset et al.															Neotropical
Yasuni Rabi	Ecuador Gabon	2014 2015	D. Donoso T. Bonebrake et al.														_	African
Khao Chong	Thailand	2015	Y. Basset et al.															Oriental
Tai Po Kau	Hong Kong, China	2009	T. Bonebrake															Oneman
Bukit Timah	Singapore	2016	M. Wong/T. Evans															
Dinghushan	China	2015	T. Bonebrake															
Xishunangbanna	China	2015	A. Nakamura															
Wanang	Papua New Guinea	2013	Y. Basset et al.															Australasian
Possible expansion of insect protocols in the near future Possible expansion of sites in the near future:																		
Manaus	Brazil 20)16 all protocol	c?															

Manaus	Brazil	2016, all protocols?
Doi Inthanon	Thailand	2016, all protocols?

TIMING OF SURVEYS AND SAMPLING EFFORT

Four surveys a year, timing depends on occurrence of dry/wet seasons

Light traps: one survey: 2 trap-nights at each of the ten locations; 4 surveys; **total 80 samples annually**


Butterfly transects: one survey: 10 timed (30 min.) transects of 500m, 3 replications; 4 surveys; **total 120 samples annually**

Euglossine baits: one survey: 7 trap-day at each of 10 locations; 4 surveys; **total 40 samples annually**

Winkler: one single survey: 10 transects of 25m, each with 5 samples of 0.25m² total 50 samples annually

Termite transects: one single survey, a 400m transects with 40 samples, each 5m²; **total 40 samples annually**

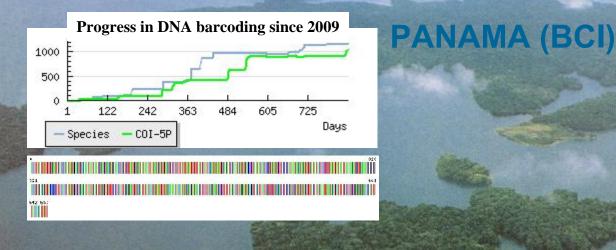
Staff: 4 full time assistants at each site

• Local reference collections

• DNA barcoding (sexual dimorphism, social castes, ca 8,000 sequences)

• Collaborating experts (in-country or abroad)

TAXONOMY


FOCUS OF MONITORING: COMMON SPECIES

- Common mistake: a monitoring program is **not** an insect survey!
- Monitoring rare species is desirable but totally impractical in tropical rainforests
- Statistical and financial challenges for monitoring rare tropical species
- Only a handful of rare species likely to be "monitored", at substantial \$\$
- Instead: focus on **common species** (and community variables), so that they can be used as indicators of early decline of habitats/populations

PAPILIONIDAE I (Other Papilio, Graphian sp

Example: BARRO COLORADO ISLAND

STATUS

2008: baseline survey
2009-2015: on-going monitoring (7th year)
Collections: 35,461 pinned specimens; 1,809 spp.
71% of spp. sequenced for DNA barcodes

Four full-time research assistants, based at STRI

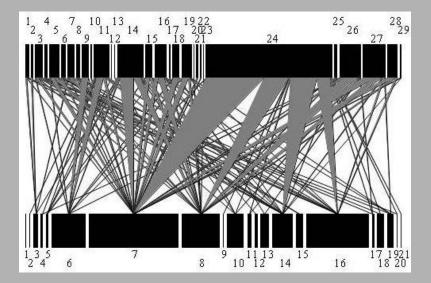
Ency Yean Bastad diad by M Alexande and M. Galderon holo: MA Galeron holo: MA Galero has strandbolog an attrandbolog an attrandbolog and Stopped and Stopped and Stopped and Stopped holo and standbolog holo and standbolog holo and standbolog holo and standbolog holo and standbolog holo and standbolog holo and holo and holo and holo holo and holo and holo and holo and holo and holo and holo and holo and holo and holo and holo	A solidator (Ural weat) of Could (and Ural weat) of Could (and Ural weat) or have a solid to the form of the the the form of the the periods and the the have a solid to the the have a solid to the	
n menter al disarra di se anteretta di mittere serie anteretta di che al anteretta di che al anteretta di che al ne a percetto fue al menteretta di serie anteretta di anteretta di serie anteretta	Refer, see BCJ antempor Addatase constraint de la con- constraint de la Constraint de la con- constraint de la Constraint de la con- constraint de la Constraint de la con- constraint de la con- cons	
Analdes (Station Stations) Analysis (Stations) Analysis (Stations) Analysis (Stations) Stations (Stations) Stations		
	5 1 2 1 5 1 2 1	
		29

SIGEO-CTFS Arthropod Initiative

> An Draw Barr, Program S. 2 Market and S. 2 Mar

b gruppen A standing spin an gang and spin an angel spin an angel spin an spin an angel spin angel spin angel spin angel spin angel spin angel angel spin angel sp

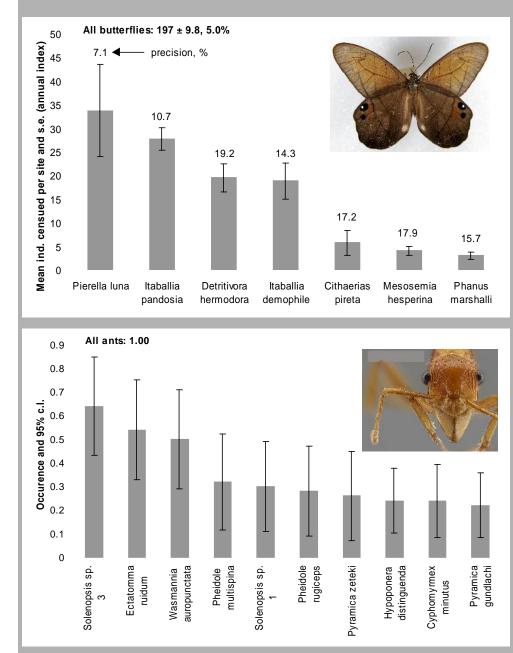
Consequences
 C


INTERACTION STUDIES

• KHC (2010): Effects of litter composition on ants

• BCI (2010), KHC (2013), WAN (2013):

Insect seed predation: quantitative food webs


RESULTS:

SELECTED EXAMPLES OUT OF 15 TAXA

- Yearly results: annual indices (butterflies & ants)
- Population dynamics (saturniid moths)
- Changes in assemblages (6 taxa)

Immediate significance vs. Interpretation of long chronosequences

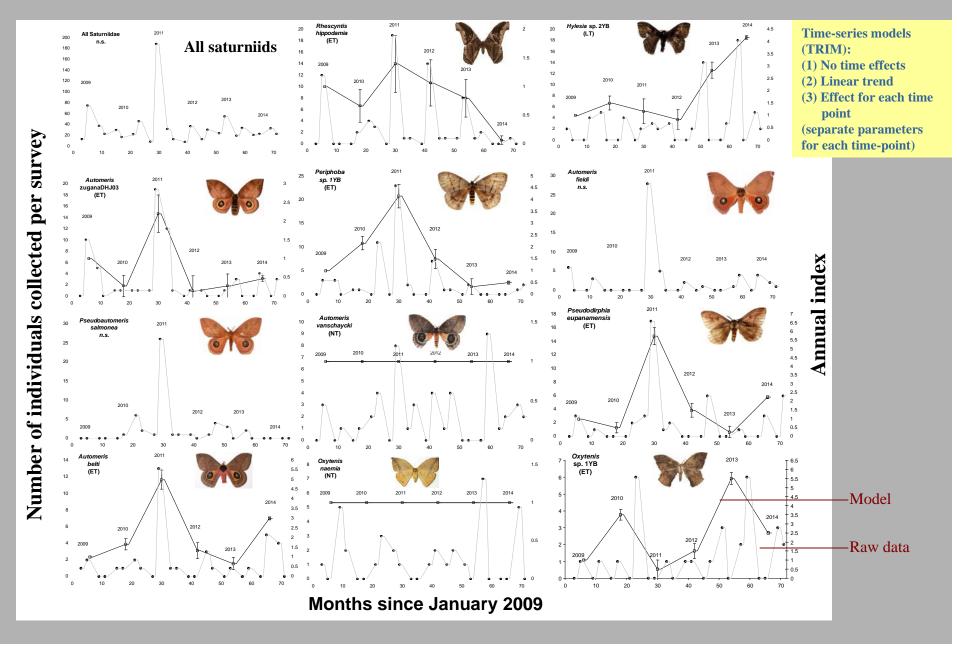
Annual indices, BCI, Year 2011

60,000 insects collected: 17,000 focal individuals (910 spp.)

For 56 spp. we can estimate annual indices with good precision

56 spp. = 6% of total spp. but 55% of total abundance of focal taxa

Annual indices: Non-social insects: mean per site (n=10) Precision = s.e./mean (< 20% very good, economic entomology)

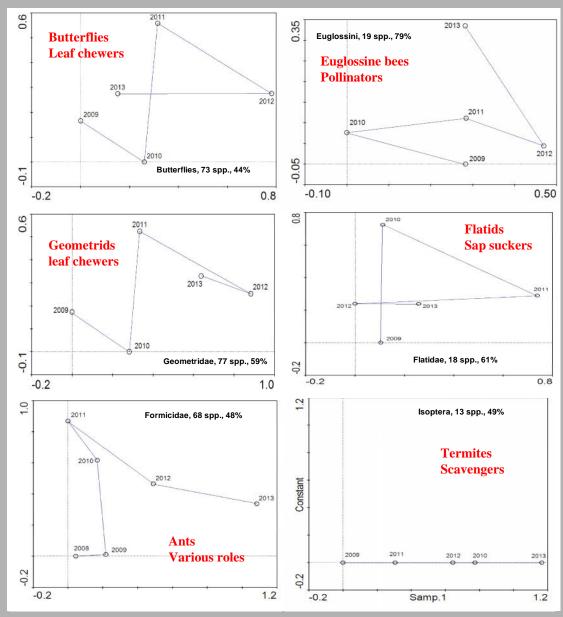

Social insects: occurrence in samples, transects or quadrats Precision = 95% c.l. on occurrence data, assuming a binomial distribution

Annual indices

Immediate significance:

- Common spp. can be monitored with relative precision, even in tropical rainforests
- Few long-term monitoring programs in the tropics (butterflies: 10-11 years: Leidner *et al.* 2010, Grøtan *et al.* 2012)
- Indices for social insects need to be reported differently than for non-social insects (refinements needed for social insects; geometric mean for non-social insects)

Population dynamics, BCI, Years 2009-2014, saturniid moths



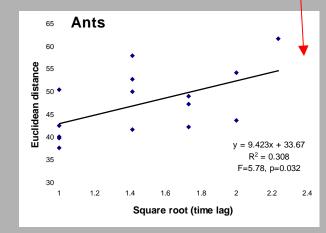
Population dynamics

Immediate significance:

- We can detect significant (short-term) trends
- Nearly a quarter of species show significant changes with time (different groups tested)

Changes in assemblages, BCI, 2009-2013

Matrices Spp. x Years DCA (6 out of 16 assemblages)


Mantel tests, p-values:

	Bees	Geometrids	Flatids	Ants
Butterflies	0.639	0.102	0.571	0.966
Bees		0.570	0.754	0.751
Geometrids			0.735	0.794
Flatids				0.637

Trajectories are independent

Directional changes are few

Regression of Euclidean distances vs. time lag:

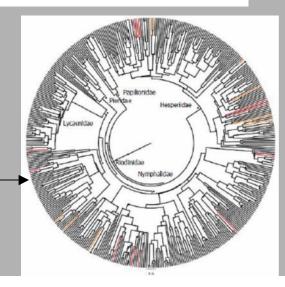
Changes in assemblages

Immediate significance:

- Trajectories appear largely independent: need to monitor an array of taxa
- Directional changes appear also to be few

Scientific output

Training of 15 assistants and 5 interns Insect collections and collateral info: pictures, DNA barcodes, etc. Educational outreach and student volunteers at BCI, KHC Scientific publications


Publish or perish

- Challenge: initial wait for quality data may be long (long chronosequences)
- Remedy: (a) comparison of insect data with other sites
 (b) faunistical surveys (if reasonably complete)
 (c) mine historical data

Example:

The butterflies of Barro Colorado Island, Panama: local extinction since the 1930s

1923-2013: 600 species
(actualized list with DNA barcodes)
< 6% prob. extinct
no relation with phylogeny ______

Future goals

- Distribute MySQL arthropod database to participating sites
- Expansion of the mini-network
- <u>Publish actively the first results of insect monitoring in the trop</u>ics
- Compare insect and plant monitoring data
- How arthropod monitoring can best complement tree monitoring?
- => Develop protocols for early warning systems based on arthropods
- (Communities of long-lived organisms (trees) appear more "stable")

Acknowledgments

SIGEO-CTFS, STRI, S. Davies, S. Miller

BCI: Universidad de Panama (Maestria de Entomologia), H. Barrios

KHC: S. Bunyavejchewin, K. Somboon, W. Sackchoowong, P. Kongnoo

WAN: V. Novotny, G. Weiblen, C. Dahl

R. Eastwood, D. Lohman, L. Sam, M. Leponce, D. Donoso, D. Roubik, S. Gripenberg, O. Lewis, S.J. Wright, T. Bonebrake, A. Nakamura