Global Forest Monitoring: CTFS-ForestGEO network

Kristina J. Anderson-Teixeira
Stuart J. Davies

Smithsonian Tropical Research Institute
Center for Tropical Forest Science

Smithsonian National Zoological Park
Conservation Biology Institute

May 4, 2014
Center for Tropical Forest Science (CTFS)- Forest Global Earth Observatory (ForestGEO)

the only ground-based forest monitoring network applying the same protocol to forests globally

64 sites | 25 countries | 100 partner institutions
> 10,000 species | > 6 million trees | > 15 million DBH measurements
CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change

KRIXTINA J. ANDERSON-TEIXEIRA1,2, STUART J. DAVIES1,3, AMY C. BENNETT2, ERIKA B. GONZALEZ-AKRE2, HELENE C. MULLER-LANDAU1, S. JOSEPH WRIGHT1, KAMARIAH ABU SALIM4, ANGÉLICA M. ALMEYDA ZAMBRANO2,5,6, ALFONSO ALONSO7, JENNIFER L. BALTZER8, YVES BASSET1, NORMAN A. BOURG2, EBEN N. BROADBENT2,5,6, WARREN Y. BROCKELMAN9, SARAYUDH BUNYAVEJCHEWIN10, DAVID F. R. P. BURSLEM11, NATHALIE BUTT12,13, MIN CAO14, DAIRON CARDENAS15, GEORGE B. CHUYONG16, KEITH CLAY17, SUSAN CORDELL18, HANDANAKERE S. DATTARAJA19, XIAOBAO DENG14, MATTEO DETTO1, XIAOJUN DU20, ALVARO DUQUE21, DAVID L. ERIKSON3, CORNEILLE E.N. EWANGO22, GUNTER A. FISCHER23, CHRISTINE FLETCHER24, ROBIN B. FOSTER25, CHRISTIAN P. GIARDINA18, GREGORY S. GILBERT26,1, NIMAL GUNATILLEKE27, SAVITRI GUNATILLEKE27, ZHANQING HAO28, WILLIAM W. HARGROVE29, TERESB B. HART30, BILLY C. H. HAU31, FANGLIANG HE32, FORREST M. HOFFMAN33, ROBERT W. HOWE34, STEPHEN P. HUBBELL1,35, FAITH M. INMAN-NARAHARI36, PATRICK A. JANSEN1,17, MINGXI JIANG38, DANIEL J. JOHNSON17, MAMORU KANZAKI39, ABDUL RAHMAN KASSIM24, DAVID KENFACK1,3, STALINE KIBET40,41, MARGARET F. KINNAIRD42,43, LISA KORTE7, KAMIL KRAL44, JITENDRA KUMAR33, ANDREW J. LARSON45, YIDE LI46, XIANKUN LI47, SHIRONG LIU48, SHAWN K.Y. LUM49, JAMES A. LUTZ50, KEPING MA50, DAMIAN M. MADDALENA33, JEAN-REMY MAKANA51, YADVINDER MALHI13, TOBY MARTHEWS13, RAFIZAH MAT SERUDIN52, SEAN M. MCMAHON1,53, WILLIAM J. MCSHEA2, HÉRÉV M. MEMIAIGHE54, XIANGCHENG MI20, TAKASHI MIZUNO39, MICHAEL MORECROFT55, JONATHAN A. MYERS56, VOJTECH NOVOTNY57,58, ALEXANDRE A. DE OLIVEIRA59, PERRY S. ONG60, DAVID A. ORWIG61, REBECCA OSTERTAG62, JAN DEN OUDEN63, GEOFFREY G. PARKER53, RICHARD P. PHILLIPS17, LAUREN SACK35, MOSES N. SAIanneer64, WEI-GUO SANG20, KRIANGSAK SRI-NGERNYUANG65, RAMAN SUKUMAR19, I-FANG SUN66, WITCHAPHART SANGPALEEE65, HEBBALALU SATHYANARAYANA SURESH19, SYLVESTERTAN67, SEANC. THOMAS68, DUNCAN W. THOMAS69, JILL THOMPSON70,71, BENJAMIN L. TURNER1, MARIA URIARTE72, RENATO VALENCIA73, MARTA I. VALLEJO74, ALBERTOVICENTIN175, Tomaš VRŠKA44, XIHUA WANG76, XUGAO WANG30, GEORGE WEIBLEN77, AMY WOLF78, HAN XU46, SANDRA YAP60, and JESS ZIMMERMAN71
Outline

1. Core census
2. The network
3. Supplementary measurements
4. Network growth & operations
1- Core Census
Attributes of a CTFS-ForestGEO Census

• Very large plot size
• Includes every freestanding woody stem ≥1cm DBH
• All individuals identified to species
• Diameter measured on all stems
• Mapping of all stems and fine-scale topography
• Census typically repeated every 5 years

Wind River, WA, USA
Example applications of core census:
mapping species distribution and C stocks on
Barro Colorado Island (Panama)

Mascaro et al., 2010
2- The Network
The CTFS-ForestGEO network represents the range of bioclimatic, edaphic, and topographic conditions experienced by forests globally.
Current Climate & Future Climate projections
(HadGEM2-ES for 2050)

Anderson-Teixeira et al. 2015
CTFS-ForestGEO plots in the landscape setting

Forest loss 2000(yellow)-2012 (red)

Hansen et al. 2013 database
3- Supplementary Measurements
Standardized measurements quantify multiple aspects of forest structure and function.

Measurement

phere gas exchange (15)
4- Network Growth & Operations
Growth of CTFS-ForestGEO

Number of Sites!

Year!

Boreal!
Temperate!
Subtropical!
Tropical!
Investigators

Network leadership: Smithsonian

Plots Principal Investigators

Dem. Rep. of Congo, Ituri
Dr. Cornellle E.N. Ewango ewango_corneille@yahoo.com
Dr. Jean-Remy Makana jr_makana@yahoo.fr
Drs. Terese and John Hart TereseHart@aol.com

Cameroon, Korup
Dr. Duncan Thomas duncanwt@gmail.com
Dr. David Kenfack kenfackd@si.edu
Dr. George Chuyong Chuyong99@yahoo.com

Gabon, Rabí
Dr. Alfonso Alonso alonsoa@si.edu
Dr. Lisa Korte kortel@si.edu
Mr. Hervé Memiahe memiahe@hotmail.com

Kenya, Mpala
Dr. Margaret Kinnaird mkinaird@wcs.org
Dr. Paul Mutuku Musili pmutuku@museums.or.ke
National and International Training and Capacity Building

Strengthens scientific capacity across the global network of sites

Provide open-access analytical and data management tools
Data & Analysis

- Data archived in standardized format
- Stored in CTFS database or managed locally
- Owned by site PIs

- CTFS R package facilitates analysis
Leveraging CTFS-ForestGEO to understand forest dynamics in an era of global change
Smithsonian Institution Global Forest Observatory
Center for Tropical Forest Science

Support

National Science Foundation
HSBC
Frank H. Levinson Family Foundation
Bromley Charitable Trust
John Swire & Sons Inc.
Mellon Foundation
Arnold Arboretum, Harvard University

&

Smithsonian Institution

www.ctfs.si.edu
Thank you!
Results: Diversity & Dynamics of Tropical Forests

1. Tree species have aggregated spatial distributions driven by specific habitat requirements and limited dispersal.

2. The functional characteristics and demography of species depend on the resources available in their preferred sites.

3. Habitat specialization is not sufficient to explain local tree diversity (evidence for resource-based niches needed).

1. Negative density-dependent effects are pervasive. Pests/pathogens are implicated.

2. Biomass & C storage depend on habitat, biogeography & phylogeny.

3. Forest communities are not in steady-state compositional equilibrium

1. Some (?)most) tropical forests are increasing biomass stocks.

2. Trees are growing more slowly in some tropical forests.

3. Extirpation of animals is changing forest diversity.
Global change pressures across CTFS-ForestGEO

Anderson-Teixeira et al. 2015
NEXT GENERATION ECOSYSTEM EXPERIMENT - TROPICS
More detailed mechanistic models of processes determining carbon/energy balance in the tropics
<table>
<thead>
<tr>
<th>Title</th>
<th>Cited by</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>The unified neutral theory of biodiversity and biogeography (MPB-32)</td>
<td>5023</td>
<td>2001</td>
</tr>
<tr>
<td>SP Hubbell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Princeton University Press</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecosystem decay of Amazonian forest fragments: a 22-year investigation</td>
<td>1164</td>
<td>2002</td>
</tr>
<tr>
<td>WF Laurance, TE Lovejoy, HL Vasconcelos, EM Bruna, RK Didham, ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservation Biology 16 (3), 605-618</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest</td>
<td>1124</td>
<td>1999</td>
</tr>
<tr>
<td>SP Hubbell, RB Foster, ST O'Brien, KE Harms, R Condit, B Wechsler, ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science 283 (5401), 554-557</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree dispersion, abundance, and diversity in a tropical dry forest</td>
<td>1122</td>
<td>1979</td>
</tr>
<tr>
<td>SP Hubbell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science 203 (4387), 1299-1309</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree allometry and improved estimation of carbon stocks and balance in tropical forests</td>
<td>1069</td>
<td>2005</td>
</tr>
<tr>
<td>J Chave, C Andalo, S Brown, MA Caims, JQ Chambers, D Eamus, ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oecologia 145 (1), 87-99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Sustainable Biosphere Initiative: an ecological research agenda: a report from the Ecological Society of America</td>
<td>936</td>
<td>1991</td>
</tr>
<tr>
<td>J Lubchenco, AM Olson, LB Brubaker, SR Carpenter, MM Holland, ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecology 72 (2), 371-412</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta-diversity in tropical forest trees</td>
<td>854</td>
<td>2002</td>
</tr>
<tr>
<td>R Condit, N Pitman, EG Leigh, J Chave, J Terborgh, RB Foster, P Núñez, ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science 295 (5555), 666-669</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>